Research Papers On Camel Milk

On By In 1

Review Article

The unique medicinal properties of camel products: A review of the scientific evidence rights and content

Open Access funded by Taibah University

Under a Creative Commons license


Camel immunoglobulins

Camel lactoferrin

Camel milk and cancer

Camel milk and diabetes



hepatocellular carcinoma cell line

HCT 116

colon carcinoma cell line


human glioma cell line


cytochrome P450 1a1 gene

Copyright © 2016 The Authors. Production and hosting by Elsevier Ltd.


استُخدمت ألبان وأبوال الإبل كعلاجات في مناطق معينة من آسيا وأفريقيا منذ أزمنة قديمة٬ ولكن حديثا فقط أبدى العلماء اهتماما باستكشاف تلك المزاعم العلاجية لمنتجات الإبل. يشير عدد من الأدلة المخبرية وبعض الدراسات السريرية إلى أن ألبان الإبل وحدها٬ وفي بعض الحالات ممزوجة مع أبوال الإبل فعّالة في علاج حالات سريرية متنوعة مثل داء السكري٬ والسرطان٬ وحساسية الأطعمة٬ ومرض التوحد٬ والتهاب الكبد الفيروسي ومجموعة أخرى من الإصابات الفيروسية والبكتيرية والطفيلية. بالإضافة إلى ذلك٬ تم اكتشاف عدد من الآثار العلاجية المحتملة لألبان وأبوال الإبل على جهاز القلب والأوعية الدموية٬ وبخاصة عملها المضاد للصفائح الدموية والمذيب للفايبرين. العرض الحالي يمثل ملخصا موجزا للأدلة العلمية المساندة لهذه الآثار العلاجية.

1. Lord C, Cook EH, Leventhal BL, Amaral DG. Autism spectrum disorders. Neuron. 2000;28(2):355–363.[PubMed]

2. American Psychiatric Association. DSM-IV-TR. Washington, DC, USA: American Psychiatric Association; 2000. Diagnostic and statistical manual of mental disorders.

3. Momeni N, Bergquist J, Brudin L, et al. A novel blood-based biomarker for detection of autism spectrum disorders. Translational Psychiatry. 2012;2(article e91)[PMC free article][PubMed]

4. Veenstra-VanderWeele J, Cook EH., Jr. Molecular genetics of autism spectrum disorder. Molecular Psychiatry. 2004;9(9):819–832.[PubMed]

5. Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah I, Van de Water J. Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain, Behavior, and Immunity. 2011;25(1):40–45.[PMC free article][PubMed]

6. AL-Ayadhi LY, Mostafa GA. A lack of association between elevated serum levels of S100B protein and autoimmunity in autistic children. Journal of Neuroinflammation. 2012;9(article 54)[PMC free article][PubMed]

7. White JF. Intestinal pathophysiology in autism. Experimental Biology and Medicine. 2003;228(6):639–649.[PubMed]

8. Bölte S, Poustka F. The relation between general cognitive level and adaptive behavior domains in individuals with autism with and without co-morbid mental retardation. Child Psychiatry and Human Development. 2002;33(2):165–172.[PubMed]

9. Baio J. Prevalence of Autism spectrum disorders—autism and developmental disabilities monitoring network, 14 Sites, United States, 2008. Morbidity and Mortality Weekly Report. 2012;61(3):1–19.[PubMed]

10. Al-Gadani Y, El-Ansary A, Attas O, Al-Ayadhi L. Metabolic biomarkers related to oxidative stress and antioxidant status in Saudi autistic children. Clinical Biochemistry. 2009;42(10-11):1032–1040.[PubMed]

11. Schopler E, Reichler RJ, Renner BR. The childhood autism rating scale. Western Psychology Services, Los Angeles, Calif, USA.

12. Castelloe P, Dawson G. Subclassification of children with autism and pervasive developmental disorder: a questionnaire based on Wing’s subgrouping scheme. Journal of Autism and Developmental Disorders. 1993;23(2):229–242.[PubMed]

13. Chauhan A, Chauhan V, Brown WT, Cohen I. Oxidative stress in autism: increased lipid peroxidation and reduced serum levels of ceruloplasmin and transferrin—the antioxidant proteins. Life Sciences. 2004;75(21):2539–2549.[PubMed]

14. Christen Y. Oxidative stress and Alzheimer disease. American Journal of Clinical Nutrition. 2000;71(2):621s–629s.[PubMed]

15. Kannan K, Jain SK. Oxidative stress and apoptosis. Pathophysiology. 2000;7(3):153–163.[PubMed]

16. Bostantjopoulou S, Kyriazis G, Katsarou Z, Kiosseoglou G, Kazis A, Mentenopoulos G. Superoxide dismutase activity in early and advanced Parkinson’s disease. Functional Neurology. 1997;12(2):63–68.[PubMed]

17. Akyol Ö, Herken H, Uz E, et al. The indices of endogenous oxidative and antioxidative processes in plasma from schizophrenic patients: the possible role of oxidant/antioxidant imbalance. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2002;26(5):995–1005.[PubMed]

18. Andreazza AC, Kauer-Sant’Anna M, Frey BN, et al. Oxidative stress markers in bipolar disorder: a meta-analysis. Journal of Affective Disorders. 2008;111(2-3):135–144.[PubMed]

19. Shohami E, Beit-Yannai E, Horowitz M, Kohen R. Oxidative stress in closed-head injury: brain antioxidant capacity as an indicator of functional outcome. Journal of Cerebral Blood Flow and Metabolism. 1997;17(10):1007–1019.[PubMed]

20. El-Ansary A, Al-Daihan S, Al-Dbass A, Al-Ayadhi L. Measurement of selected ions related to oxidative stress and energy metabolism in Saudi autistic children. Clinical Biochemistry. 2010;43(1-2):63–70.[PubMed]

21. Zoroglu SS, Armutcu F, Ozen S, et al. Increased oxidative stress and altered activities of erythrocyte free radical scavenging enzymes in autism. European Archives of Psychiatry and Clinical Neuroscience. 2004;254(3):143–147.[PubMed]

22. Russo AJ. Decreased serum Cu/Zn SOD in children with autism. Nutrition and Metabolic Insights. 2009;2:27–35.

23. Meguid NA, Dardir AA, Abdel-Raouf ER, Hashish A. Evaluation of oxidative stress in autism: defective antioxidant enzymes and increased lipid peroxidation. Biological Trace Element Research. 2011;143(1):58–65.[PubMed]

24. Al-Yafee YA, Al-Ayadhi LY, Haq SH, El-Ansary AK. Novel metabolic biomarkers related to sulfur-dependent detoxification pathways in autistic patients of Saudi Arabia. BMC Neurology. 2011;11(article 139)[PMC free article][PubMed]

25. Al-Mosalem OA, El-Ansary A, Attas O, Al-Ayadhi L. Metabolic biomarkers related to energy metabolism in Saudi autistic children. Clinical Biochemistry. 2009;42(10-11):949–957.[PubMed]

26. McGinnis WR. Oxidative stress in autism. Integrative Medicine. 2005;3(6):42–57.

27. Agrawal RP, Beniwal R, Kochar DK, et al. Camel milk as an adjunct to insulin therapy improves long-term glycemic control and reduction in doses of insulin in patients with type-1 diabetes: a 1 year randomized controlled trial. Diabetes Research and Clinical Practice. 2005;68(2):176–177.[PubMed]

28. Agrawal RP, Jain S, Shah S, Chopra A, Agarwal V. Effect of camel milk on glycemic control and insulin requirement in patients with type 1 diabetes: 2-years randomized controlled trial. European Journal of Clinical Nutrition. 2011;65(9):1048–1052.[PubMed]

29. Saltanat H, Li H, Xu Y, Wang J, Liu F, Geng X-H. The influences of camel milk on the immune response of chronic hepatitis B patients. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2009;25(5):431–433.[PubMed]

30. Shabo Y, Yagil R. Etiology of autism and camel milk as therapy. Journal of Endocrine Genetics. 2005;4(2):67–70.

31. Yagil R. Camel milk and autoimmune diseases: historical medicine. 2004,

32. Mohamed HE, Mousa HM, Beynen AC. Ascorbic acid concentrations in milk from Sudanese camels. Journal of Animal Physiology and Animal Nutrition. 2005;89(1-2):35–37.[PubMed]

33. Al-Humaid AI, Mousa HM, El-Mergawi RA, Abdel-Salam AM. Chemical composition and antioxidant activity of dates and dates-camel-milk mixtures as a protective meal against lipid peroxidation in rats. American Journal of Food Technology. 2010;5(1):22–30.

34. Shabo Y, Barzel R, Margoulis M, Yagil R. Camel milk for food allergies in children. Israel Medical Association Journal. 2005;7(12):796–798.[PubMed]

35. Kappeler S, Farah Z, Puhan Z. Sequence analysis of Camelus dromedarius milk caseins. The Journal of Dairy Research. 1998;65(2):209–222.[PubMed]

36. Kappeler S. Compositional and structural analysis of camel milk proteins with emphasis on protective proteins [Ph.D. thesis] Zurich, Switzerland: Swiss Federal Institute of Technology; 1998.

37. Zafra O, Fraile S, Gutiérrez C, et al. Monitoring biodegradative enzymes with nanobodies raised in Camelus dromedarius with mixtures of catabolic proteins. Environmental Microbiology. 2011;13(4):960–974.[PubMed]

38. Rose S, Melnyk S, Pavliv O, et al. Evidence of oxidative damage and inflammation associated with low glutathione redox status in the autism brain. Transl Psychiatry. 2012;2(e134)[PMC free article][PubMed]

39. McGinnis WR. Oxidative stress in autism. Alternative Therapies in Health and Medicine. 2004;10(6):22–36.[PubMed]

40. Söğüt S, Zoroğlu SS, Özyurt H, et al. Changes in nitric oxide levels and antioxidant enzyme activities may have a role in the pathophysiological mechanisms involved in autism. Clinica Chimica Acta. 2003;331(1-2):111–117.[PubMed]

41. Yorbik O, Sayal A, Akay C, Akbiyik DI, Sohmen T. Investigation of antioxidant enzymes in children with autistic disorder. Prostaglandins Leukotrienes and Essential Fatty Acids. 2002;67(5):341–343.[PubMed]

42. Knivsberg A, Reichelt KL, Nodland N, Hoien T. Autistic syndromes and diet: a follow-up study. Scandinavian Journal of Educational Research. 1995;39:223–236.

43. Knivsberg AM, Reichelt KL, Høien T, Nødland M. A randomised, controlled study of dietary intervention in autistic syndromes. Nutritional Neuroscience. 2002;5(4):251–261.[PubMed]

44. Al-Ayadhi LY, Mostafa GA. Elevated serum levels of macrophage-derived chemokine and thymus and activation-regulated chemokine in autistic children. Journal of Neuroinflammation. 2013;10(article 72)(1)[PMC free article][PubMed]

45. Al-wabel NA, Hassan A, Abbas H, Muosa H. Antiulcerogenic effect of camel milk against ethanol induced gastric ulcers in rats. WebmedCentral Veterinary Medicine. 2012;3(3)WMC002804

46. Klevay L. Advances in cardiovascular-copper research. In: Schrauzer GN, editor. Proceedings of the 1st International Bio-Minerals Symposium: Trace Elements in Nutrition, Health and Disease; 2003; Montreal, Canada. Institute Rosell;

47. Powell SR. The antioxidant properties of zinc. Journal of Nutrition. 2000;130(5):1447–1454.[PubMed]

48. Faber S, Zinn GM, Kern JC, II, Skip Kingston HM. The plasma zinc/serum copper ratio as a biomarker in children with autism spectrum disorders. Biomarkers. 2009;14(3):171–180.[PubMed]

49. Kurutas EB, Cetinkaya A, Bulbuloglu E, Kantarceken B. Effects of antioxidant therapy on leukocyte myeloperoxidase and Cu/Zn-superoxide dismutase and plasma malondialdehyde levels in experimental colitis. Mediators of Inflammation. 2005;2005(6):390–394.[PMC free article][PubMed]

50. Green PS, Mendez AJ, Jacob JS, et al. Neuronal expression of myeloperoxidase is increased in Alzheimer’s disease. Journal of Neurochemistry. 2004;90(3):724–733.[PubMed]

51. Choi D-K, Pennathur S, Perier C, et al. Ablation of the inflammatory enzyme myeloperoxidase mitigates features of Parkinson’s disease in mice. Journal of Neuroscience. 2005;25(28):6594–6600.[PubMed]

52. Nagra RM, Becher B, Tourtellotte WW, et al. Immunohistochemical and genetic evidence of myeloperoxidase involvement in multiple sclerosis. Journal of Neuroimmunology. 1997;78(1-2):97–107.[PubMed]

53. Anthony AK, Russo J, Jepson B, Wakefield A. Low serum myeloperoxidase in autistic children with gastrointestinal disease. Journal of Clinical and Experimental Gastroenterology. 2009;2:85–94.[PMC free article][PubMed]

54. Horvath K, Perman JA. Autistic disorder and gastrointestinal disease. Current Opinion in Pediatrics. 2002;14(5):583–587.[PubMed]

55. Rahman I, Biswas SK, Jimenez LA, Torres M, Forman HJ. Glutathione, stress responses, and redox signaling in lung inflammation. Antioxidants and Redox Signaling. 2005;7(1-2):42–59.[PubMed]

56. El Heni J, Sfar S, Hammouda F, Sfar MT, Kerkeni A. Interrelationships between cadmium, zinc and antioxidants in the liver of the rat exposed orally to relatively high doses of cadmium and zinc. Ecotoxicology and Environmental Safety. 2011;74(7):2099–2104.[PubMed]


Leave a Reply

Your email address will not be published. Required fields are marked *